(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(-(x, y), z) → -(+(x, z), y)
-(+(x, y), y) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(-(z0, z1), z2) → -(+(z0, z2), z1)
-(+(z0, z1), z1) → z0
Tuples:
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
S tuples:
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
K tuples:none
Defined Rule Symbols:
+, -
Defined Pair Symbols:
+'
Compound Symbols:
c
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
We considered the (Usable) Rules:
+(-(z0, z1), z2) → -(+(z0, z2), z1)
-(+(z0, z1), z1) → z0
And the Tuples:
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+(x1, x2)) = [1] + [4]x1
POL(+'(x1, x2)) = [4]x1
POL(-(x1, x2)) = [4] + [4]x1 + [3]x2
POL(-'(x1, x2)) = [2] + x1 + x2
POL(c(x1, x2)) = x1 + x2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(-(z0, z1), z2) → -(+(z0, z2), z1)
-(+(z0, z1), z1) → z0
Tuples:
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
S tuples:none
K tuples:
+'(-(z0, z1), z2) → c(-'(+(z0, z2), z1), +'(z0, z2))
Defined Rule Symbols:
+, -
Defined Pair Symbols:
+'
Compound Symbols:
c
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))